DENAR Inc.

706 Bostwick Avenue, Bridgeport, CT 06605
TEL: 203-368-6751 FAX: 203-368-3747
http://www.devarinc.com

Model 18-215A

2 WIRE mV or TC SIGNAL CONVERTER

1- General Description 1
2- Specifications 2
3- Installation 4
4- Recalibration 8
5- Troubleshooting 11
List of Illustrations and Drawings
Typical Wiring (Fig. 3.1) 4
General Dimensions of 18-215A Case (Fig. 3.2) 4
General Dimensions of M31 Bracket 5
Assembly of the 18-215A in a SnapTrack 5
mounting rail (Fig. 3.4)
Assembly of the 18-215A in an explosion 5
proof housing (Fig. 3.5)
General Dimensions of 18-034 and 18-017 racks, and 6
power distribution Panel - PDP (Fig. 3.6A)
General Dimensions of 18-016 and 18-008 racks 7
(Fig. 3.6B)
Summary of a major calibration change (Fig. 4.1) 8
Span and Zero trim resistor table (Fig. 4.2) 9
Description of the DIP switches S1 \& S2 (Fig. 4.3) 9
Examples of calculating the offset correction (Fig. 4.4) 9
Final Assembly, 18-215a 10
Interconnection Diagram to Intrinsically Safe Apparatus
Factory Mutual Research Corporation A515107

SECTION I

GENERAL DESCRIPTION

1.1 The 18-215A two wire mV/TC isolated transmitter receives signals from thermocouples or other millivolt sources and provides a $4 / 20 \mathrm{~mA}$ output signal completely isolated from the input signal source. It is designed to connect with only two copper wire leads that will supply the voltage to operate the transmitter from a power supply, and also carry the output current. The output current is then used for recording, computing, or controlling.
1.2 The $18-215 \mathrm{~A}$ has been designed to provide ease of calibration. It has the flexibility for thermocouple selection (J, K, T, R, S, and E) using a DIP switch. In addition, the DIP switch provides input offset selection in steps of 1 mV to 31 mV (positive or negative) and thermocouple break indication selection (upscale or downscale). Moreover, the 18-215A has a single turn SPAN set potentiometer that provides continuous span adjustment between 4 and 40 mV , eliminating the need for changing calibrating resistors. The fine SPAN and ZERO trimmers, as featured in Devar standards products remains unchanged. The input span can easily be modified from 4 to 40 mV to cover a new span of 1 to 10,2 to 20,8 to 80 , or 16 to 160 mA by replacing two plug-in resistors.
1.3 The unit has reverse supply polarity protection, and will operate with a wide range of supply voltages (10 to 44 VDC). The transmitter provides an accurate thermocouple junction compensation and tracking. The 18-215A is designed for intrinsic safety when operated from an appropriate power supply and an approved barrier.
1.4 The unit is protected from Radio Frequency Interferences (RFI). It also is provided with a current monitor terminal where the output current can be measured without interrupting the power loop. An optional linearizing circuit can be provided to have an output signal proportional to the sensed temperature.

SECTION II

SPECIFICATIONS

2.1 GENERAL

Power Requirements
Accuracy

Ambient Temperature
Thermal Zero Shift

Thermal span shift

Electrical Classifications

Common Mode Rejection
Transverse Rejection
3 db Frequency (Break Frequency)
Response Time
Weight
2.2 INPUT

Sensor

Input Span

Input Break Indication
Input Offset
Input Source Current
Thermocouple or mV Operation

10-44 VDC at power terminals
0.1% of span (includes combined effects of hysteresis, repeatability, and linearity referred to mV input)
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Less than $0.01 \% /{ }^{\circ} \mathrm{F}$ of span ($>5 \mathrm{mV}$ span) Less than $0.02 \% /{ }^{\circ} \mathrm{F}$ of span ($1-5 \mathrm{mV}$ span)

Less than $0.01 \% /{ }^{\circ} \mathrm{F}$ of span (includes linearization error on linearized TC units)

Circuit designed to meet requirements of intrinsic safety and ISARP 12.2

115 db at 60 Hz
30 db at 60 Hz
9 Hz
60 msec
5.5 oz.

Thermocouples J, K, T, R, S, and E are standard, and millivolt source
$4-40 \mathrm{mV}$ (span can easily be changed to $1-10,2-20,8-80$, or $16-160 \mathrm{mV}$)

Upscale or Downscale
0 to $\pm 31 \mathrm{mV}$
8 nA, max (upscale or downscale)
grounded or ungrounded

$2.3 \quad$ OUTPUT

Current Output 4 to 20 mA

Current Output Limits
Load Resistance
Load Resistance Effect
Power Supply Effect
3.1 to 26 mA
$\mathrm{R}_{\mathrm{L}}(\max)=(\mathrm{V}$ supply -10$) / 20(\mathrm{~K}-\mathrm{Ohms})$
0.05% of span per 300 Ohms change
0.01% of output span per Volt

2.4 OPTIONS

-E80: A 10-50 mA current output can be provided.
-L: A Linearizing circuit can be provided for TC units. The output current is proportional to the sensed temperature with a linearity of $\pm 0.1 \%$ plus a $5: 1$ improvement in the thermocouple curve.
-M37A: The 18-215A can be offered in an explosion proof housing.
-HV: High voltage supply rating from 10 to 80 VDC (4-20 mA output only)
-E25: The 18-215A can be offered with a fast response. Response time 10 ms 3 db Frequency (Break Frequency) 60 Hz

SECTION III

INSTALLATION

3.1 The 18-215A mV/TC isolated transmitter can be mounted on our M31 bracket for surface mounting, or installed into a SnapTrack mounting rail. The 18-215A transmitter has been miniaturized to allow 10 units per foot length of a SnapTrack. In addition, the unit may be installed in different size racks, such as 34 units in a $5-1 / 4^{\prime \prime} \times 19$ " rack, or 17 units in a $3-1 / 2^{\prime \prime} \times 19$ " rack, or 16 units in a $5-1 / 4 " \times 10 "$ rack. The $18-215 \mathrm{~A}$ is also offered in an explosion proof housing (Option -M37A).
3.2 Connect appropriate DC power source in series with load to (+) and (-) PWR terminals. Also connect the thermocouple wire or the millivolt source to (+) and $(-)$ terminals. Refer to fig. 3.1 for detailed wiring instructions.

Fig. $3.1 \quad$ Typical Wiring

Fig 3.2 General Dimensions of 18-215A Case

Fig. 3.3 General Dimensions of the M31 Bracket

Fig. 3.4 Assembly of 18-215A in a SnapTrack Mounting Rail

Fig 3.5 Assembly of 18-215A in an Explosion Proof Housing

Fig. 3.6A General Dimensions of 18-034, 18-017 Racks, and Power Distribution Panel (PDP)

$18-008$	$10 "$	$8-1 / 8^{\prime \prime}$	$3-1 / 2^{\prime}$	$1-3 / 4^{\prime}$	
$18-017$	19^{\prime}	$17-7 / 32^{\prime \prime}$	$3-1 / 2^{\prime \prime}$	$1-3 / 4^{\prime \prime}$	
$18-016$	$10^{\prime \prime}$	$8-1 / 8^{\prime \prime}$	$5-1 / 4^{\prime \prime}$	$2-1 / 4^{\prime \prime}$	
$18-034$	$19^{\prime \prime}$	$17-7 / 32^{\prime \prime}$	$5-1 / 4^{\prime}$	$2-1 / 4^{\prime \prime}$	
MODEL	A	B	C	D	
	DIMENSION				

Fig. 3.6B General Dimension of 18-016 and 18-008 Racks

SECTION IV

RECALIBRATION

4.1 If a calibration, other than the one originally provided, is desired, changes of several percent can be made quickly by the fine ZERO and SPAN trimmers. Additional calibration changes can be made by the SPAN SET trimmers, provided that the input span is within the span limits indicated. For a major calibration change, refer to Fig. 4-1.
4.2 If the input span is between 4 and 40 mV , the coarse span pot may be set to the required input span, eliminating the need for changing the span resistor (R110), or the zero trim resistor (R113). The 4 to 40 mV span can easily be changed to 1-10, $2-20,8-80$, or $16-160 \mathrm{mV}$ by changing the span resistor (R110) and the zero trim resistor (R113) as shown in Fig. 4-2.

STEPS	Condition Required	Amplifier Input	
		Millivolt	Thermocouple
1	Input Span	Span Set, R110 (Fig. 4-2)	
2	Zero Trim	R113 (Fig. 4-2)	
3	Input Offset	DIP Switches (Fig. 4-3, 4-4)	
4	Thermocouple Break Indication	Upscale or Downscale (Fig. 4-3)	
5	Thermocouple Junction Compensation	None (S1, pos 1-4 are OFF)	Direct or Reverse (Select TC on S1 pos. 1-4)
6	Linearization (Option -L)	RL1, RL2, RL3 = OPEN, RL4 $=$ SHORT	$\begin{aligned} & \text { RL1, RL2, RL3, } \\ & \text { RL4, RL5 } \end{aligned}$

Fig. 4-1 Summary of a major calibration change

mV Input Span	Span Resistor R110, Wirewound		Zero Trim Resistor R113, Metal film 1\%	
	VALUE	PART NO.	VALUE	PART NO.
1 TO 10	137 K	$223504-0065$	357 K	$223737-0247$
2 TO 20	69 K	$223504-0049$	178 K	$223737-0088$
4 TO 40	34.6 K	$223504-0040$	88.7 K	$223737-0221$
8 TO 80	16.5 K	$223504-0096$	44.2 K	$223737-0103$
16 TO 160	8 K	$221764-0025$	22.1 K	$223737-0202$

Fig. 4-2 Span and Zero Trim Resistor Table

Fig. 4-3 Description of the DIP Switches S1 \& S2
4.3 To determine the offset correction required to accommodate the start of output range for an input signal (thermocouple or millivolt), follow the steps outlined in Fig. 4-4

STEPS REQUIRED			Input Signal	
			Millivolt	TC Direct (J)
1 - Specify Input Range			5 to 15 mV	0 to $500^{\circ} \mathrm{F}$
2 - Calculate the Millivolt input span			$\begin{gathered} +15-(+5)=10 \\ m V \end{gathered}$	$\begin{gathered} +14.108-(-0.885)= \\ 14.993 \mathrm{mV} \end{gathered}$
3 - Express the start of Input Range			+5	-0.885 (Ref 32 ${ }^{\circ} \mathrm{F}$)
4 - Express start of input range reference to the room temperature			+5	$\begin{gathered} -0.885-(+1.22)= \\ -2.105\left(75^{\circ} \mathrm{F}\right) \end{gathered}$
5 - Enter correction for the TC compensation			---	-14.2
TC	DIR	REV		
J, T	$\begin{gathered} -14.2 \\ \hline-11.2 \end{gathered}$	$\frac{14.2}{11.2}$		
R, S	-1.67	1.67		
E	-16.7	16.7		
6 - Add steps 4 and 5. The total is the offset correction required.			+5	$\begin{gathered} -14.2+(-2.105)= \\ -16.305 \end{gathered}$
7 - Set switches S1 and S2			S1, positions 5 and 7 are ON. S2, set positive polarity. See Fig. 4.3	S1, positions $1 \& 9$ are ON. S2, set negative polarity. See Fig. 4.3

Fig. 4.4 Examples of Calculating the Offset Correction

SECTION V

TROUBLESHOOTING

5.1 If the transmitter is not working properly, the fault may be a loose connection or improper wiring to external terminals.
a. Check external connections and polarity to DC power source and the input signal (Thermocouple or millivolt source).
b. Measure the supply voltage at the power terminals. The voltage should be anywhere from 10 VDC to 44 VDC.
c. Operate with low input source resistance, preferably less than 1000 Ohms.

A final assembly drawing A514788 is included.

